13 research outputs found

    Expression of HMB45, MelanA and SOX10 is rare in non-small cell lung cancer

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) and melanoma are frequent entities in routine diagnostics. Whereas the differential diagnosis is usually straight forward based on histomorphology, it can be challenging in poorly differentiated tumors as melanoma may mimic various histological patterns. Distinction of the two entities is of outmost importance as both are treated differently. HMB45 and MelanA are recommended immunohistological markers for melanoma in this scenario. SOX10 has been described as an additional marker for melanoma. However, comprehensive large-scale data about the expression of melanoma markers in NSCLC tumor tissue specimen are lacking so far. Methods: Therefore, we analyzed the expression of these markers in 1085 NSCLC tumor tissue samples. Tissue microarrays of NSCLC cases were immunohistochemically stained for HMB45, MelanA, and SOX10. Positivity of a marker was defined as ≥1% positive tumor cells. Results: In 1027 NSCLC tumor tissue samples all melanoma as well as conventional immunohistochemical markers for NSCLC could be evaluated. HMB45, MelanA, and SOX10 were positive in 1 (< 1%), 0 (0%) and 5 (< 1%) cases. The HMB45 positive case showed co-expression of SOX10 and was classified as large cell carcinoma. Three out of five SOX10 positive cases were SqCC and one case was an adenosquamous carcinoma. Conclusions: Expression of HMB45, MelanA and SOX10 is evident but exceedingly rare in NSCLC cases. Together with conventional immunomarkers a respective marker panel allows a clear-cut differential diagnosis even in poorly differentiated tumors

    Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL

    Full text link
    The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression

    Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images

    No full text
    The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and require expert knowledge, great experience, thorough morphological analysis, and often additional expensive immunohistological and molecular methods. As these requirements are not always available, supplemental methods supporting morphological-based decision making and potentially entity subtyping are required. Deep learning methods have been shown to classify histopathological images with high accuracy, but data on NHL subtyping are limited. After annotation of histopathological whole-slide images and image patch extraction, we trained and optimized an EfficientNet convolutional neuronal network algorithm on 84,139 image patches from 629 patients and evaluated its potential to classify tumor-free reference lymph nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal diffuse large B-cell lymphoma. The optimized algorithm achieved an accuracy of 95.56% on an independent test set including 16,960 image patches from 125 patients after the application of quality controls. Automatic classification of NHL is possible with high accuracy using deep learning on histopathological images and routine diagnostic applications should be pursued

    Prognostic Impact of PD-L1 Expression in pN1 NSCLC: A Retrospective Single-Center Analysis

    No full text
    The programmed death-ligand 1 (PD-L1) plays a crucial role in immunomodulatory treatment concepts for end-stage non-small cell lung cancer (NSCLC). To date, its prognostic significance in patients with curative surgical treatment but regional nodal metastases, reflecting tumor spread beyond the primary site, is unclear. We evaluated the prognostic impact of PD-L1 expression in a surgical cohort of 277 consecutive patients with pN1 NSCLC on a tissue microarray. Patients with PD-L1 staining (clone SP263) on >1% of tumor cells were defined as PD-L1 positive. Tumor-specific survival (TSS) of the entire cohort was 64% at five years. Low tumor stage (p < 0.0001) and adjuvant therapy (p = 0.036) were identified as independent positive prognostic factors in multivariate analysis for TSS. PD-L1 negative patients had a significantly better survival following adjuvant chemotherapy than PD-L1 positive patients. The benefit of adjuvant therapy diminished in patients with PD-L1 expression in more than 10% of tumor cells. Stratification towards histologic subtype identified PD-L1 as a significant positive predictive factor for TSS after adjuvant therapy in patients with adenocarcinoma, but not squamous cell carcinoma. Routine PD-L1 assessment in curative intent treatment may help to identify patients with a better prognosis. Further research is needed to elucidate the predictive value of PD-L1 in an adjuvant setting

    Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis

    No full text
    Abstract Introduction Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. Materials and methods In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non‐neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. Results Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. Conclusions Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine

    Mass spectrometry imaging differentiates chromophobe renal cell carcinoma and renal oncocytoma with high accuracy

    Get PDF
    Background: While subtyping of the majority of malignant chromophobe renal cell carcinoma (cRCC) and benign renal oncocytoma (rO) is possible on morphology alone, additional histochemical, immunohistochemical or molecular investigations are required in a subset of cases. As currently used histochemical and immunohistological stains as well as genetic aberrations show considerable overlap in both tumors, additional techniques are required for differential diagnostics. Mass spectrometry imaging (MSI) combining the detection of multiple peptides with information about their localization in tissue may be a suitable technology to overcome this diagnostic challenge. Patients and Methods: Formalin-fixed paraffin embedded (FFPE) tissue specimens from cRCC (n=71) and rO (n=64) were analyzed by MSI. Data were classified by linear discriminant analysis (LDA), classification and regression trees (CART), k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) algorithm with internal cross validation and visualized by t-distributed stochastic neighbor embedding (t-SNE). Most important variables for classification were identified and the classification algorithm was optimized. Results: Applying different machine learning algorithms on all m/z peaks, classification accuracy between cRCC and rO was 85%, 82%, 84%, 77% and 64% for RF, SVM, KNN, CART and LDA. Under the assumption that a reduction of m/z peaks would lead to improved classification accuracy, m/z peaks were ranked based on their variable importance. Reduction to six most important m/z peaks resulted in improved accuracy of 89%, 85%, 85% and 85% for RF, SVM, KNN, and LDA and remained at the level of 77% for CART. t-SNE showed clear separation of cRCC and rO after algorithm improvement. Conclusion: In summary, we acquired MSI data on FFPE tissue specimens of cRCC and rO, performed classification and detected most relevant biomarkers for the differential diagnosis of both diseases. MSI data might be a useful adjunct method in the differential diagnosis of cRCC and rO

    Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections

    Get PDF
    Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics

    DataSheet_1_Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections.pdf

    No full text
    Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics.</p

    Role of Synaptophysin, Chromogranin and CD56 in adenocarcinoma and squamous cell carcinoma of the lung lacking morphological features of neuroendocrine differentiation: a retrospective large-scale study on 1170 tissue samples

    No full text
    Background!#!Synaptophysin, chromogranin and CD56 are recommended markers to identify pulmonary tumors with neuroendocrine differentiation. Whether the expression of these markers in pulmonary adenocarcinoma and pulmonary squamous cell carcinoma is a prognostic factor has been a matter of debate. Therefore, we investigated retrospectively a large cohort to expand the data on the role of synaptophysin, chromogranin and CD56 in non-small cell lung cancer lacking morphological features of neuroendocrine differentiation.!##!Methods!#!A cohort of 627 pulmonary adenocarcinomas (ADC) and 543 squamous cell carcinomas (SqCC) lacking morphological features of neuroendocrine differentiation was assembled and a tissue microarray was constructed. All cases were stained with synaptophysin, chromogranin and CD56. Positivity was defined as &amp;gt; 1% positive tumor cells. Data was correlated with clinico-pathological features including overall and disease free survival.!##!Results!#!110 (18%) ADC and 80 (15%) SqCC were positive for either synaptophysin, chromogranin, CD56 or a combination. The most commonly positive single marker was synaptophysin. The least common positive marker was chromogranin. A combination of ≤2 neuroendocrine markers was positive in 2-3% of ADC and 0-1% of SqCC. There was no significant difference in overall survival in tumors with positivity for neuroendocrine markers neither in ADC (univariate: P = 0.4; hazard ratio [HR] = 0.867; multivariate: P = 0.5; HR = 0.876) nor in SqCC (univariate: P = 0.1; HR = 0.694; multivariate: P = 0.1, HR = 0.697). Likewise, there was no significant difference in disease free survival.!##!Conclusions!#!We report on a cohort of 1170 cases that synaptophysin, chromogranin and CD56 are commonly expressed in ADC and SqCC and that their expression has no impact on survival, supporting the current best practice guidelines
    corecore